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Unsteady flow of a viscous fluid from a source in a wall 

BYE. 0. TUCK 
Department of Mathematics, University of Adelaide 

(Received 13 March 1969) 

A problem with possible physiological applications concerns the escape of a 
viscous fluid through a small hole in a wall. The solution presented here is for a 
line source of sinusoidally pulsating strength located a t  the origin x = y = 0, 
where the plane y = 0 is a rigid wall and the fluid is a t  rest at  y = + 00. The linear- 
ized Navier-Stokes equations are solved, and results in the form of streamline 
plots are shown and discussed. 

1. Introduction 
An irrotational source flow with radial streamlines and a velocity diminishing 

with distance T from the origin like r2 in three dimensions or r-l in two dimensions 
is a solution of the equations of motion of a viscous or non-viscous fluid. If the 
fluid is non-viscous, this solution is also valid when the source is situated on a 
rigid plane wall across which no fluid passes, but along which fluid flows. Hence 
we can use such source flows to construct models for flows of inviscid fluid 
through small holes in a wall (see e.g. Tuck 1969). 

On the other hand, if the fluid is viscous and cannot slip along the wall, an 
irrotational source flow cannot be the correct solution when the source is situated 
at a hole in the wall. It is the purpose of the present paper to present a solution 
for an unsteady two-dimensional flow caused by the presence of a line source of 
oscillating strength a t  the origin x = y = 0, the wall occupying the remainder of 
the plane y = 0, as sketchedin figure 1. The unsteady mot.ions treated are supposed 
to  be small in amplitude, so that we can linearize the Navier-Stokes equations 
by neglecting convection, but not local inertia. 

This problem has been studied partly because of its possible applications to  
physiological problems, where the wall is that of an artery (or of the heart itself) 
and the source is a model of a small hole. The flow of blood through such a hole 
would then be, in part, oscillatory and velocities would be small. Much work has 
been done (initially by Womersley 1955, but see also Pry & Greenfield 1963, and 
references quoted therein) on blood flow using the linearized Navier-Stokes 
equations. The results would appear to have been quite promising in so far as 
they concern unidirectional flow in straight tubes, but little work has been done 
on flows with more realistic geometries. The present work can be viewed as an 
attempt to proceed towards more general blood flow patterns. 

However, no such applications are given in the present paper, which concerns 
itself solely with the analytical solution for the stream function, and the numerical 
computation of the streamline patterns. The stream function is obtained in the 

41 F L M  41 



642 E .  0. Tuck 

form of a definite integral which is evaluated by numerical quadrature. Stream- 
lines are traced using inverse interpolation on the stream function and are 
plotted at  several instants of time, corresponding to decreasing strengths of the 
source, from fully source-like through to fully sink-like. 

The resulting flow patterns are far from being irrotational. Indeed as the source 
diminishes in strength, closed circulating regions appear and subsequently 
migrate from near the wall to  infinity. At an instant when the source is changing 

into a sink there is of course no flux from the origin at all, and the flow is entirely 
circulatory. Then, as the sink establishes itself, the region of closed streamlines 
moves outward along the symmetry plane x = 0 and finally disappears when the 
flow has become fully sink-like. 

2. Formulation of the problem 
We assume that the flow is two-dimensional and the fluid incompressible. 

Hence there exists a stream function $'(x, y, t )  such that the velocity components 
are 

The vorticity has only a x component, namely 

u =  ?&, v=-?&. (2.1) 

0' = - V q y ,  (2.2) 

(2.3) 

Assuming that the amplitude of the oscillatory motion is small, we neglect the 
second-order convect'ion terms on the left of (2.3), leaving the linearized equation 

which satisfies the vorticity form of the Navier-Stokes equation, i.e. 

0; + uw; + vo; = UVZW'. 

w; = UVZW', 

or, in terms of the stream function, 

a 
- V2$' = UV4$'.  
at 
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The extent of validity of this approximation may be tested by an elaborate order 
of magnitude analysis (see e.g. Wang 1966); however, it  is clear that as the 
amplitude of velocity fluctuations tends to zero this approximation will get better 
and better (but not necessarily uniformly in space). 

Since (2.5) and the boundary conditions (to follow) are linear, we can obtain 
the solution with an arbitrary time dependence from that for sinusoidal time 
dependence. Thus we set 

where @(x, y) is a complex-valued function satisfying 

@’(x, y, t )  = 9 @ ( x ,  y) eirt, (2.6) 

V d @  = a2V2@, (2.7) 

(2.8) where a2 = icr/v. Similarly, the vorticity is 

where 

and 

w’(x, y, t )  = %a(x, y) efut, 

V2w = 012w 

w = -V2$. 

The boundary conditions on the velocities, 

and 

u,v+O as y++m 

u ,v  = 0 on y = 0, (x+ 0 ) ,  

can be written in terms of $(x, y) as 

$x’$l+o as y++m 

and, on y = 0,, x $: 0, $x = 0, 

and @ 1 = o .  

(2.9) 
(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Integrating the boundary condition (2.15)) we have $ = constant on y = 0,, 
x > 0, with a similar condition (but a different constant) on y = O,, x < 0. In  
fact the difference between the constant values of $ on x > 0 and x < 0 is just 
the magnitude of the oscillatory flux generated by the source at x = 0. Again, 
since the problem is linear, we can without loss of generality choose these con- 
stants at  will, and henceforth use 

$ = * I  on y = O +  ( ~ 5 0 )  (2.17) 

We can now if we wish confine attention to the first quadrant by invoking 

$ = V 2 $ = 0  on x = O +  ( y >  0) .  (2.18) 

in place of (2.15). 

symmetry of the flow with respect to the plane x = 0, and setting 

If (2.18) is used, we need only part of (2.17)) namely 

$ =  1 on y=O+ (x > 0). 

Thus, in summary, the problem is to find @ satisfying (2.7) in x > 0, y > 0, 
subject to the boundary conditions (2.14), (2.16), (2.18) and (2.19). This problem 
is illustrated diagrammatically in figure 1 .  
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3. Solution for the stream function 
The boundary-value problem formulated in 0 2 may be solved by standard 

methods, such as Fourier-sine transformation with respect to x. The resulting 
expression for the stream function is 

where p2 = a2+h2, 9zp > 0. (3.2) 

To verify that this is indeed the correct solution, we first calculate the vorticity 

(3.3) 

using (2.11), and observe that this expression satisfies (2.10) i fp i s  given by (3.2). 
Hence @ as given by (3.1) must satisfy the field equation (2.7). The boundary 
conditions (2.14), (2.16) and (2.18) are seen to be satisfied by inspection, while in 
order to test the final boundary condition (2.19) we evaluate 

= 1, 
as required. 

Two other forms for $ are of interest. If we define polar co-ordinates ( r ,  0) by 

x = r cose, 

y = r sine, 

then we can manipulate the formula (3.1) into the form 

and, further, to 

where w is the vorticity, given by (3.3). 
Equation (3.4) shows @ to be the sum of an irrotational expression 1 - (217~) 0 

which satisfies the boundary conditions (2.14), (2.17), but not the no-slip condi- 
tion (2.16) and is exactly the stream function for a source in an inviscid fluid, 
plus a rotational term which vanishes on y = 0. In  (3.5) we have separated off 
some additional irrotational terms, leaving the contribution - w/a2 as the only 
rotational part. I n  fact, the harmonic function conjugate to @+w/a2 can be 
identified with the fluid pressure amplitude. 

Further manipulation of the integrals in the expressions for @ and w is possible, 
and these integrals can be written, a t  least in part, in terms of certain Bessel and 



Flow of viscou~JEuid from a Source 645 

Struve functions of complex argument. However, such manipulation serves little 
purpose, since values for @are obtained easily enough by direct numerical evalua- 
tion of the integrals. Results of such calculations are shown in the form of 
streamline plots in figures 2-7; discussion of these figures is postponed till 8 7, 
after we have investigated the asymptotic properties of the flow both far from 
and near to the source. 

4. Far-field behaviour of the flow 
At a great distance from the wall y = 0, we should expect the flow to differ 

little from that for a source in an inviscid fluid. The analysis required to prove 
this is not difficult. Large y in the integrals corresponds broadly to small A ,  and 
we can obtain a valid asymptotic expansion by expanding everything but the 
exponentials for small A. Thus, in the expression (3.3) for the vorticity, we have 

m 

w = 2 1 ( A  + (A2 + a2)&) e-(A2faa)*y sin Ax d A  
T I 0  

Although this expression is not uniformly valid if x is also large, it  remains true 
that for all x, w -+ 0 exponentially as y -+ 00. 

Similarly, the integral occurring in the expression (3.5) for is 

acos6 1 cos36 
r a r3 

=---- + o(r-5).  

This expression is uniformly valid with respect to x. Hence the asymptotic 
expansion of the stream function for large y is 

+exponentially small terms from w. (4.3) 

The leading term is of course the harmonic source stream function, while the 
second term can be interpreted as a dipole, the third a quadrupole, etc. 

In  fact we can further interpret the dipole contribution as a change of origin. 
Before doing this, it is best to revert to the real-valued quantity @’ by (2.6). 
Thus (4.4) $’(x, y ,  t )  = cos v t ta@(x ,  y )  - sin vt$@(x, y )  

+ o(r-3) ] .  (4.5) 
2 v BcosO 2vsin20 

+sinvt[;r(G) -+-- r T I ~  r2 
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At 0" phase, i.e. crt = 0,27~, ..., the first square bracket in (4.5) dominates, and 
we can write 

(4.6) 

i.e. the appearance of the flow at  infinity is that  of a source at  (0, (v/2a)*). The 
streamlines will therefore ultimately be radial lines emanating from this point. 
For instance, the streamlines shown in figure 2 have precisely this character, and 
the computed angles agree well with that predicted by (4.6). 

Similarly a t  90' phase, i.e. vt = in, Qr, etc., the dipole term will dominate, 
giving 

+ 0 ( ~ - - 3 ) .  (4.7) 

Again, the O ( r 2 )  term can be interpreted as a change of origin, this time to  
(0, (2v / v )4 ) ,  and the streamline pattern approximates to  circles through this 
point tangent to the plane x = 0. The computed streamlines shown in figure 5 
confirm this asymptotic analysis. At phases other than multiples of 90', some 
streamlines will be ultimately radial, while others will be dipole-like near infinity. 

5. Near-field behaviour of the flow 
The detailed asymptotic analysis of the integrals when r = (x2  + y2): is small 

is quite difficult. One can obtain the first few terms by expanding for large h 
while keeping Ax, hy bounded. Thus, from (3.4) we have 

a 2  @ = I - - @ - -  ' /: ( A + A + + . . . (e-Ay exp { - (a2y/2~)) e-. . . - e-*y) sin hxdh 
7~ na2 

= 1--~+231/s" 2 [1-2+..,] e-*gsinhxdh 

77 n o  
= 1 _ _  2 8+2YS-2.012y ($..-q+ ... 

?l nx2+y2 71 4 

(5.1) 

The above analysis is somewhat less than rigorous, but a more refined asymptotic 
expansion leads to  the same result and to  the error term O(r4) shown. 

The correctness of the expansion (5.1) may, however, be independently 
verified by reference to  the original boundary-value problem. If we look at  the 
near-field approximation of the field equation (2.7) (e.g. by stretching co- 
ordinates with respect to some artificial small parameter) it is clear that the 
limiting form of (2.7) is the biharmonic equation. That is, if for small r 

@ ( G Y ) + @ O ( % Y )  +@I(GY)+ .*.> (5.2) 

(5.3) 

where terms are of decreasing order of magnitude with respect to r ,  then the 
leading term @o must satisfy 

v4@o = 0, 
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and the second term $l satisfies 

V4$, = a2V2$,. 

It is readily verifiable that the function 

(5.4) 

(5 .5 )  

is indeed a solution of the biharmonic equation (5.3) and satisfies the boundary 
conditions (2.15)-( 2.1 S), while 

$1 = -@2r2sin26' 1--8 ( 3 
satisfies (5.4) and vanishes with its normal derivative on y = 0. The solution (5.5) 
was obtained by Rayleigh (1893) in solving a Stokes-flow problem. 

One is more used to this Stokes-type approximation in the case of creeping 
flows, and it is perhaps surprising to find that in the present flow the Stokes 
approximation is valid in the region of greatest velocities, near the origin. How- 
ever, it should be observed that the flow represented by +,(@, although radial, is 
very different from that of a harmonic source. The streamlines associated with 
$, are crowded near to 8 = Qn. (see e.g. figure 2), and no flow at all takes place 
along the wall 8 = 0. Hence not only are the velocities large, but the shear is also 
very large, so large as to cause the viscous terms in the equation of motion to 
dominate the local inertia terms. 

Expressing the result (5.1) in terms of the real stream function f(x,  y, t ) ,  we 
have 

P ( X , Y , t )  = coscrt 

Thus at zero phase, streamlines near the origin are radial (but crowded near 
8 = in, as mentioned above) whereas at  90" phase the streamlines are solutions 
of r2sin28{1 - (2/n) 8) = constant. These curves are concave upwards, looking 
much like hyperbolae. In  combination with the concave-downward dipole-like 
far-field behaviour of these streamlines, this suggests closed streamlines. The 
necessity for closed streamlines at  90" phase is further indicated by the fact that 
$'(x, y, n/2a) tends to zero both as r -+ 0 and r -+ GO, so that no streamline can end 
at the origin or at  infinity. In fact all streamlines at  90" phase are closed (figure 5 ) ;  
for phases other than multiples of 90" some streamlines must be closed, while 
others go from r = 0 to r = 00. 

6. Numerical analysis 

dimensionalize by writing in (3.1) and elsewhere, 
Before evaluating the stream function numerically, it is convenient to non- 
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etc., and immediately dropping the dashes. The net effect of these transforma- 
tions is simply to replace a2 by i wherever it occurs; i.e. the frequency IT and 
viscosity v appear only in the form of a length scale (v / r )*  which is absorbed into 
the co-ordinates. 

In  particular, (3.1) becomes 

Numerical values of the stream function were obtained by direct trapezoidal 
approximation of (6.2), giving 

where hi =jAA (6.4) 

and pi = (h;+i)+. (6.5) 
The calculations were performed on a CDC 6400 computer, using the complex 
arithmetic facility of FORTRAN IV. 

The accuracy of the approximation (6.3) depends on the two parameters Ah, 
the fineness of subdivision, and N ,  the number of terms summed. Both of these 
parameters were chosen automatically in order to achieve 4 significant figure 
accuracy no matter what the value of x or y. For instance, when y is small, N is 
taken at  least large enough for the exponentials to be less than 0.00005, i.e. 

10 
Ah.y' 

N > -  

On the other hand, when x is large, AA must be small enough for sinhx not to 
vary too rapidly over one interval AA. Thus, for x > 1, 

AA < e/x, (6.7) 
where e is an interval smaII enough to achieve 4-figure accuracy at  x = 1 (found 
by trial and error). Other criteria were built into the production program, which 
did in fact achieve a uniform 4-figure accuracy, tested by comparison with a 
corresponding 6-figure program. 

The streamlines shown in figures 2-7 were obtained in the simplest possible 
way by inverse interpolation on $'(x, y, t ) .  For instance, at  fixed values of x and 
$' we can interpolate to find the value of y a t  which the streamline ~' = constant 
crosses the line x = constant. Inverse interpolation with respect to the polar 
co-ordinate 8, at fixed Y, was also used. The interpolation process was continued 
iteratively, usually taking only one or two cycles, until the value o f f  was 
within 0.0005 of that demanded, or, in a case where the streamline did not cross 
the given line x = constant, until failure to find the streamline was apparent. 

The procedures described above were developed with the primary aim of 
minimizing expenditure of the author's time, not necessarily that of the com- 
puter, while maintaining a strict control on the accuracy of the results. Never- 
theless, only about 1 h of central processor time was required in total for the 
production runs leading to figures 2-7, so that a search for more efficient 
numerical methods would have been wasteful. 
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7. Discussion of computed streamlines 
Figures 2-7 show the development of the streamline patterns with time, 

starting from crt = 0 when the maximum outflow is occurring, moving through 
at = in (45" phase, source half turned off) and at = $p (75"phase) to at = in 
(90' phase, turned off), and then as the flow becomes inward or sink-like, through 

8 
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0 2 4 6 8 10 

FIGURE 3 

at = &n (105' phase) to at = $n (135' phase, sink half turned on). The stream- 
lines at  at = n (180' phase, flow fully sink-like) are not shown, as they are 
identical to those of figure 2 with reversed direction. 

The fully source-like streamlines of figure 2 all emanate from the origin and end 
a t  infinity. The fluid particles avoid moving near the fixed wall y = 0, so that as 
they emerge from the origin they are biased towards the vertical. The computed 
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nearly straight portions near the origin agree with the asymptotic analysis of 5 5 ,  
as do the far-field portions with 5 4. To within the order of accuracy of the figure, 
the near-field result seems to  be valid for r < 1 and the far-field for r > 4, remem- 
bering that the co-ordinates plotted are made non-dimensional with respect 

As soon as the strength of the source starts to diminish it would appear that 
closed streamlines form. A closed bubble-like region of circulating fluid appears 

to ( v / a ) k  

0 2 4 6 8 io 
FIGURE 4 

90" phase 8Li 

0 2 4 6 8 10 

FIGURE 5 

near the origin and grows in size. At 45" phase (figure 3) such a region no doubt 
occurs near (3.0, 0.5), although it would have been quite difficult to find and plot 
it using the present program. The value of $' on y = 0 is cost17 or 0.707, so 
that the streamline $' = 0.7 shown leaves very little 'space' in flux for more 
streamlines, even though it has a substantial upward bump at x = 3.0. On the 
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other hand, at 75' phase (figure 4) the region of circulating fluid has become 
quite apparent. Here the value of $' on y = 0 is 0.26, and any streamline with 
9' greater than this, such as $' = 0.275 and $' = 0.3, must be closed. 

When we reach 90" phase (figure 5), the strength of the source has dropped to 
zero, and no fluid is actually leaving the origin at  all. What remains is a mass of 

8 

6 

4 

2 

PP 

135" phase 

- I J+'=-0.25 
$'=-0.5 / 1 

2 4 6 8 10 
FIGURE 7 

circulating fluid, the direction being clockwise and the value of the stream 
function small but positive. The maximum value of $' appears to be about 0.15, 
the centre of the region being at about (3-0, 3.0). 

Now as time further increases the flow becomes sink-like, the lower left-hand 
parts of the closed streamlines of figure 5 being drawn into the origin. The 
remaining circulatory flow is thrown upward, creating (figure 6) a bubble-like 
region centred on x: = 0. The existence of this region at 1 0 5 O  phase is indicated 
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by the fact that f can be zero at  points not on x = 0. Thus the symmetry 
streamline $' = 0 divides on x = 0. 

Finally, at  135" phase (figure 7) the closed region has moved upward and is 
out of the graph shown (although it would in any case be too small and elongated 
t o  plot). The flow is now strongly sink-like and becomes fully sink-like at  180' 
phase. This picture of the flow now repeats itself, the sink turning off and a source 
re-establishing itself. 
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